Что такое фотосинтез? Как происходит процесс фотосинтеза

Основные фазы

Фотосинтез — достаточно сложный природный процесс, который включает в себя световую и темновую фазы.

Особенности световой фазы

Этот этап фотосинтеза осуществляется непосредственно на мембранах тилакоидов, расположенных с внутренней стороны хлоропласта. Процесс состоит из нескольких шагов, проходящих в следующем порядке:

  1. Свет, попадающий на растение, поглощается зеленым пигментом хлорофилла, что приводит к возбуждению молекулы и ее участию в процессе дальнейшего синтеза.
  2. Вода расщепляется на несколько составляющих, одной из которых являются атомы водорода. Именно это вещество в итоге используется для синтеза углеводных соединений.
  3. Синтез Аденозинтрифосфорной кислоты (АТФ) — действующего вещества, играющего роль энергетического накопителя в большинстве биологических процессов.

Световая фаза может проходить лишь при участии солнечного света или искусственного освещения.  

Особенности темновой фазы

Этот процесс осуществляется в стромах хлоропластов, обеспечивая выделение растениями кислорода и синтез глюкозы. Для синтезирования моносахаридов из углекислого газа активно используются вещества и энергия, которые были запасены в результате химических реакций под влиянием солнца. К примеру, для получения 1 молекулы глюкозы растению необходимо израсходовать 12 НАДФН и 18 АТФ.Рассматриваемая фаза проходит круглосуточно, ведь для ее успешного осуществления не требуется расхода световой энергии. Стоит заметить, что, несмотря на определенные энергетические потери во время темновой фазы фотосинтеза, общий КПД биологического процесса остается достаточно высоким. Рис. 4. Химическая формула фотосинтеза</figcaption>

История проведения научных исследований по фотосинтезу

В процессе изучения растений и животных было сделано ряд важнейших экспериментов, которые привели ученых к открытию фотосинтеза. Произошло это еще несколько столетий назад. В 1600 году бельгийский биолог Ян Ван Гельмонт провел достаточно простой, но очень значимый эксперимент. Он поместил в горшок с землей небольшую ивовую веточку. Несколько лет растение получало в качестве полива дождевую воду, что привело к увеличению его массы на 60 кг. При этом вес земли в горшке уменьшился всего на 50 грамм. Рис. 1. Процесс фотосинтеза</figcaption>В 1771 году англичанин по имени Джозеф Пристли также провел очень значимый эксперимент. Он закрыл под колпаком мышь, но существо погибло от удушья уже через 5 дней. В следующий раз он поместил под колпак не только мышку, но и небольшую веточку зеленой мяты. Животное выжило, а ученый сделал выводы о существовании некоего процесса, противоположного дыханию. Также этот эксперимент доказал способность зеленых растений выделять кислород в процессе собственной жизнедеятельности.

Важно! Джозеф Пристли большую часть жизни посвятил службе священнослужителем в английской церкви, но вошел в историю человечества в роли выдающегося ученого.   

В 1782 году швейцарец Жан Сенебье привел научные доказательства химического распада углекислого газа под длительным влиянием солнечного света. Этот процесс беспрерывно происходит внутри зеленых органоидов практически всех растений.В 1787 году француз Жак Бусенго обнаружил, что растительность поглощает воду в процессе синтеза необходимых для ее жизнедеятельности органических веществ.А уже в 1864 году, немецкий биолог Юлиус Сакса сделал научный прорыв в исследовании процессов фотосинтеза и практически завершил цепочку открытий. Именно этот ученый смог доказать, что соотношение углекислого газа, потребляемого растениями, и вырабатываемого кислорода составляет пропорцию 1:1.

Углекислый газ в процессе фотосинтеза

Растения получают углекислый газ из воздуха через их листья. Углекислый газ просачивается через маленькое отверстие в нижней части листа – устьицу.

Нижняя часть листа имеет свободно расположенные клетки, чтобы углекислый газ достиг других клеток в листьях. Это также позволяет кислороду, образующемуся при фотосинтезе, легко покидать лист.

Углекислый газ присутствует в воздухе, которым мы дышим, в очень низких концентрациях и служит необходимым фактором темновой фазы фотосинтеза.

Этапы фотосинтеза

Легкие Реакции

Световые реакции происходят в тилакоидных мембранах хлоропластов растительных клеток. Тилакоиды имеют плотно упакованные кластеры белков и ферментов, известные как фотосистемы. Существуют две из этих систем, которые работают совместно друг с другом для удаления электронов и водородов из воды и передачи их в кофакторы ADP и NADP +. Эти фотосистемы были названы в том порядке, в котором они были обнаружены, что противоположно тому, как электроны проходят через них. Как видно на изображении ниже, электроны, возбуждаемые световой энергией, протекают сначала через фотосистему II (PSII), а затем через фотосистему I (PSI), создавая NADPH. АТФ создается белком АТФ-синтаза, который использует накопление атомов водорода, чтобы стимулировать добавление фосфатных групп к ADP.

thylakoid-membrane.jpg

Вся система работает следующим образом. Фотосистема состоит из различных белков, которые окружают и связывают ряд молекул пигмента. Пигменты – это молекулы, которые поглощают различные фотоны, позволяя их электронам возбуждаться. хлорофилл а является основным пигментом, используемым в этих системах, и собирает окончательный перенос энергии перед высвобождением электрона. Фотосистема II запускает этот процесс электронов, используя световую энергию для расщепления молекулы воды, которая выделяет водород и откачивает электроны. Затем электроны пропускаются через пластохинон, ферментный комплекс, который выделяет больше водорода в тилакоидное пространство. Затем электроны протекают через комплекс цитохрома и пластоцианина, чтобы достичь фотосистемы I. Эти три комплекса образуют цепь переноса электронов во многом как тот, который видели в митохондриях. Фотосистема I затем использует эти электроны, чтобы стимулировать восстановление NADP + до NADPH. Дополнительный АТФ, образующийся во время световых реакций, происходит из АТФ-синтазы, которая использует большой градиент молекул водорода для управления образованием АТФ.

Цикл Кальвина

С его электронными носителями NADPH и ATP, загруженными электронами, завод теперь готов к производству запасной энергии. Это происходит во время цикла Кальвина, который очень похож на цикл лимонной кислоты, наблюдаемый в митохондриях. Тем не менее, цикл лимонной кислоты создает АТФ других электронных носителей из 3-углеродных молекул, в то время как цикл Кальвина производит эти продукты с использованием НАДФН и АТФ. Цикл состоит из 3 фаз, как показано на рисунке ниже.

1_calvin-cycle.jpg

На первом этапе углерод добавляется к 5-углеродному сахару, создавая нестабильный 6-углеродный сахар. На втором этапе этот сахар восстанавливается в две стабильные молекулы углерода с 3 углеродами. Некоторые из этих молекул могут использоваться в других метаболических путях и экспортироваться. Остальные остаются для продолжения цикла по циклу Кальвина. На третьем этапе пятиуглеродный сахар регенерируется, чтобы начать процесс заново. Цикл Кальвина происходит в строма из хлоропласт, Хотя они не считаются частью цикла Кельвина, эти продукты могут быть использованы для создания различных сахаров и структурных молекул.

Строение листьев растений

Мы не можем полностью изучить фотосинтез, не зная больше о строении листа. Лист адаптирован для того, чтобы играть жизненно важную роль в процессе фотосинтеза.

Внешнее строение листьев

  • Площадь

Одной из самых главных особенностей растений является большая площадь поверхности листьев. Большинство зеленых растений имеют широкие, плоские и открытые листья, которые способны захватывать столько солнечной энергии (солнечного света), сколько необходимо для фотосинтеза.

  • Центральная жилка и черешок

Центральная жилка и черешок соединяются вместе и являются основанием листа. Черешок располагает лист таким образом, чтобы он получал как можно больше света.

  • Листовая пластинка

Простые листья имеют одну листовую пластину, а сложные – несколько. Листовая пластинка – одна из самых главных составляющих листа, которая непосредственно участвует в процессе фотосинтеза.

  • Жилы

Сеть жилок в листьях переносит воду от стеблей к листьям. Выделяемая глюкоза также направляется в другие части растения из листьев через жилки. Кроме того, эти части листа поддерживают и удерживают листовую пластину плоской для большего захвата солнечного света. Расположение жилок (жилкование) зависит от вида растения.

  • Основание листа

Основанием листа выступает самая нижняя его часть, которая сочленена со стеблем. Зачастую, у основания листа располагается парное количество прилистников.

  • Край листа

В зависимости от вида растения, край листа может иметь различную форму, включая: цельнокрайнюю, зубчатую, пильчатую, выемчатую, городчатую и т.п.

  • Верхушка листа

Как и край листа, верхушка бывает различной формы, включая: острую, округлую, туповатую, вытянутую, оттянутою и т.д.

Внутреннее строение листьев

Ниже представлена ​​близкая схема внутреннего строения тканей листьев:

  • Кутикула

Кутикула выступает главным, защитным слоем на поверхности растения. Как правило, она толще на верхней части листа. Кутикула покрыта веществом, похожим на воск, благодаря которому защищает растение от воды.

  • Эпидермис

Эпидермис – слой клеток, который является покровной тканью листа. Его главная функция – защита внутренних тканей листа от обезвоживания, механических повреждений и инфекций. Он также регулирует процесс газообмена и транспирации.

  • Мезофилл

Мезофилл – это основная ткань растения. Здесь происходит процесс фотосинтеза. У большинства растений мезофилл разделен на два слоя: верхний – палисадный и нижний – губчатый.

  • Защитные клетки

Защитные клетки – специализированные клетки в эпидермисе листьев, которые используются для контроля газообмена. Они выполняют защитную функцию для устьица. Устьичные поры становятся большими, когда вода есть в свободном доступе, в противном случае, защитные клетки становятся вялыми.

  • Устьице

Фотосинтез зависит от проникновения углекислого газа (CO2) из воздуха через устьица в ткани мезофилла. Кислород (O2), полученный как побочный продукт фотосинтеза, выходит из растения через устьица. Когда устьица открытые, вода теряется в результате испарения и должна быть восполнена через поток транспирации, водой, поглощенной корнями. Растения вынуждены уравновешивать количество поглощенного СО2 из воздуха и потерю воды через устьичные поры.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий