Тест по биологии Биосинтез белков в живой клетке. Биосинтез углеводов — фотосинтез 9 класс

Биосинтез белков

Растения сами синтезируют все необходимые им аминокислоты, используя азот, аммиак, нитраты. Высшие животные и человек получают незаменимые аминокислоты с пищей. Заменимые аминокислоты животные и грибы синтезируют из азотосодержащих соединений. Биосинтез белка из аминокислот – это сложный многоэтапный процесс, который требует много энергии. Каждая из реакций биосинтеза обеспечивается специфическими ферментами.

Все живые организмы сохраняют наследственную информацию в молекулах нуклеиновых кислот в виде определенной последовательности нуклеотидов. Такая единая система сохранения называется генетическим кодом.

В полипептидной цепи каждый аминокислотный остаток кодируется определенной последовательностью из трех нуклеотидов – триплетом (комбинация из трех нуклеотидов дает возможность кодировать 43 = 64 типа аминокислот, то есть 20 основных).

Свойства генетического кода:

1) вырожденность – одну аминокислоту могут кодировать несколько разных триплетов. Большинство основных аминокислот (18 из 20) кодируется несколькими триплетами – от 2 до 6, лишь две (триптофан и метионин) – одним;

2) однозначность – каждый триплет кодирует лишь определенную аминокислоту;

3) универсальность – код единый для всех организмов, существующих на Земле. Одни и те же триплеты кодируют одни и те же аминокислоты разных организмов;

4) неперекрываемость – генетическая информация может считываться лишь одним способом, в одном направлении.

Между генами существуют участки, которые не несут генетической информации. Они лишь отделяют одни участки от других, как «разделительные знаки». Их называют спейсерами (от англ. спейс – пространство). Каждый из трех триплетов (УАА, УАГ, УГА) означает прекращение синтеза одной полипептидной цепи. Они называются стоп-кодонами. Триплет АУГ определяет место начала синтеза следующей полипептидной цепи.

Этапы биосинтеза белков

plasticheskij-obmen-biosintezy-belkov-uglevodov-lipidov-nukleinovyh-kislot-dnk-i-rnk2.jpg

Синтез белка

В 50-х годах XX века был выяснен механизм этого процесса. Синтез белка включает несколько этапов: транскрипцию (синтез предшественника иРНК – про-иРНК), трансляцию (перенесение последовательности нуклеотидов в молекуле иРНК в последовательность аминокислотных остатков молекулы белка) и обособление белковой молекулы.

Транскрипция

Транскрипция (от лат. thranscriptio – переписывание). Фермент PHК-полимераза разъединяет двойную цепь ДНК. По принципу комплементарности на одной из них синтезируется молекула про-иРНК. Потом она с помощью специальных ферментов превращается в активнуюформу иРНК. Для этого из нее удаляются участки, лишенные генетической информации. Из ядра она может поступать в цитоплазму клетки.

Трансляция

Трансляция (от лат. translatio – передача). В цитоплазме с помощью ковалентной связи каждая из 20 аминокислот присоединяется к определенной тРНК, иРНК связывается с рибосомой. Рибосома надвигается на нитевидную молекулу иРНК таким образом, что она оказывается между двумя субъединицами. По принципу комплементарности транспортная РНК, которая переносит аминокислоту, взаимодействует с помощью своего триплета – антикодона с особым триплетом иРНК – кодоном. Первый кодон дает сигнал о начале синтеза полипептидной цепи.

Возникает инициативный комплекс, который состоит из триплета иРНК, рибосомы и определенной тРНК.

Благодаря последовательному соединению пептидными связями аминокислотных остатков между собой, полипептидная цепь удлиняется. Рибосома перемещается слева направо по иРНК и образует белковую молекулу. С помощью определенной тРНК каждая из аминокислот транспортируется к рибосоме и размещается в цепи.

В рибосоме есть особый участок, где происходит трансляция – функциональный центр. Его размеры отвечают длине двух триплетов. Вместе с тем в функциональном центре может находиться два соседних триплета иРНК. В одной его части антикодон тРНК узнает кодон иРНК, а в другой – аминокислота освобождается от тРНК.

Длина молекулы иРНК определяет количество рибосом, которые одновременно могут уместиться на ней. Молекула иРНК с нанизанными на нее рибосомами называется полисомой, или полирибосомой.

Процесс синтеза белка происходит с большой затратой энергии, которая выделяется при расщеплении АТФ. На присоединение к синтезированной полипептидной цепи одного аминокислотного остатка расходуется энергия, которая высвобождается при расщеплении одной молекулы АТФ.

Синтез белковой молекулы завершается, как только рибосома достигает стоп — кодона. Рибосома вместе с белковой молекулой оставляет иРНК. Молекула белка попадает в эндоплазматическую сеть и транспортируется к определенному участку клетки, а рибосома – на любую другую молекулу иРНК. Белок приобретает определенную пространственную конфигурацию, молекула белка становится функционально активной.

У эукариот и прокариот механизмы биосинтеза белка схожи. Различаются рибосомы. Размеры рибосом у прокариот меньше. Рибосомы прокариот похожи на рибосомы митохондрий и пластид.

Начало теста:

  • <
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

Биосинтез белка происходит:

Вариант 1

A1. Как называется первый этап биосинтеза белка?

А2. Где происходит непосредственное образование полимерной цепи белка?

А3. Как называется первичный продукт фотосинтеза?

А4. Что представляет собой процесс фотолиза (фотоокисления)?

В1. Какая энергия способствует процессу биосинтеза белков в клетке?

В2. Как называются триплеты в иРНК?

C1. Объясните, от каких факторов зависит скорость протекания процесса фотосинтеза.

Идет подсчет результатов

11

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий